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Abstract: Carbon (C) emissions from forest fires in the Amazon during extreme droughts may 
correspond to more than half of the global emissions resulting from land cover changes. Despite 
their relevant contribution, forest fire-related C emissions are not directly accounted for within 
national-level inventories or carbon budgets. A fundamental condition for quantifying these 
emissions is to have a reliable estimation of the extent and location of land cover types affected by 
fires. Here, we evaluated the relative performance of four burned area products (TREES, MCD64A1 
c6, GABAM, and Fire_cci v5.0), contrasting their estimates of total burned area, and their influence 
on the fire-related C emissions in the Amazon biome for the year 2015. In addition, we distinguished 
the burned areas occurring in forests from non-forest areas. The four products presented great 
divergence in the total burned area and, consequently, total related C emissions. Globally, the 
TREES product detected the largest amount of burned area (35,559 km2), and consequently it 
presented the largest estimate of committed carbon emission (45 Tg), followed by MCD64A1, with 
only 3% less burned area detected, GABAM (28,193 km2) and Fire_cci (14,924 km2). The use of 
Fire_cci may result in an underestimation of 29.54 ± 3.36 Tg of C emissions in relation to the TREES 
product. The same pattern was found for non-forest areas. Considering only forest burned areas, 
GABAM was the product that detected the largest area (8994 km2), followed by TREES (7985 km2), 
MCD64A1 (7181 km2) and Fire_cci (1745 km2). Regionally, Fire_cci detected 98% less burned area in 
Acre state in southwest Amazonia than TREES, and approximately 160 times less burned area in 
forests than GABAM. Thus, we show that global products used interchangeably on a regional scale 
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could significantly underestimate the impacts caused by fire and, consequently, their related carbon 
emissions. 

Keywords: committed carbon; forest fire; land use and land cover change; regional assessment 
 

1. Introduction 

Naturally occurring fires are a rare event in the Amazon, with return intervals of hundreds if 
not thousands of years [1]. However, fires are often used as a tool to clear the land after deforestation 
or maintain existing farmland and pasture, which means their occurrence in the Amazon is primarily 
associated with human activity [2,3]. These two fire types, deforestation fires and management fires, 
impose risks on adjacent forests, and when these are impacted, the third main type of fire occurs, the 
forest fires. Forest fires contribute significantly to global climate change, consuming plant biomass 
and transferring part of the associated carbon (C) stock to the atmosphere [4]. The gross C emissions 
from forest fires across the Brazilian Amazon (270 ± 137 Tg C year−1) [5] corresponded to 80% of the 
Brazilian emissions resulting from land use change (338 ± 142 Tg C) [6] during drought years. 
Additionally, forest fires in the Legal Brazilian Amazon contributed 86% (68% to 103%) to the annual 
C emission reduction target [7] set by the Brazilian National Climate Change Plan [8]. 

Despite this remarkable contribution, forest fire-related C emissions are not yet accounted for 
national-level inventories. The quantification of deforestation-related fire emissions in these 
inventories takes into account the strong relationship between these two processes (r2 = 84%, p < 0.004) 
[9]. However, in the last decade a relative decoupling between deforestation and fire incidence has 
been observed, disaggregating these two processes in terms of emissions [5]. This pattern has been 
associated with an amplification of forest fragmentation [10] and an increase in extreme drought 
frequency [5], favoring the leakage of deforestation and management fires into surrounding forests. 
These anomalous climate events have happened more often during the last few decades [11,12], and 
global climate models predict a drier Amazon in the 21st century [13,14]. Recently, the area of burned 
forests relative to total burned area has increased during extreme droughts. For example, an increase 
of 51–99% in the forest burned area was observed in the 2015/2016 extreme drought years in relation 
to the average from 2006 to 2016 [15]. In addition, fires reduce forest storage of carbon by 
approximately 25% compared to pristine forests [16], highlighting the impact of forest fires on the 
carbon balance. Therefore, the prevalence of forest fires during extreme droughts makes it urgent to 
also account for non-deforestation fire-related carbon emissions [15].  

In order to have fire-related C emissions adequately accounted for, it is essential to have an 
accurate estimation of extent, location, and land cover affected. In this sense, several methodological 
approaches have been developed using remote sensing applications for the detection and monitoring 
of fires [7,17–20]. Burned area can be detected by remote sensing in a variety of ways. The diversity 
of methodologies, combined with the availability of multiple sensors, and the fast development of 
new technologies, reflects the high number of burned area products. They can be developed for 
different purposes, reach different scales, and present different spatial resolutions, varying 
considerably in distribution, size, and frequency of mapped fires [21]. In this sense, intercomparison 
is an important and practical tool for characterizing burned area products according to their 
performance [22,23] when field validation points are not available. Nonetheless, intercomparison 
implicitly assumes that, as a whole, the products being compared provide a reasonable 
approximation of the conditions on the ground [22]. It should be recognized as a complementary 
evaluation to the product validation. Since no product is a ground portrait, and all have limitations, 
the choice of which product to use should consider the advantages and disadvantages in terms of the 
data use objective, taking into account the regional performance of each one of them. It must be 
recognized that the main challenge is trying to precisely balance the pros and cons, and identifying 
the implications of the choice. 
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Only a few studies have been carried out to compare different burned area products [22,24–27]. 
Currently, there is a dearth in the literature providing a regional intercomparison of burned area 
products for the Amazon [22]. Given the importance of this assessment to improve the fire products 
and consequently fire-related C emission estimates of this region, it is critical to evaluate the relative 
performances of the most-used global burned area products, both on forest and non-forest areas, to 
provide clear information regarding their limitations and implications. This work performed an 
intercomparison of three global burned area products and one regional, all developed independently 
and for different purposes and scales. The study considered total burned area detected, and its 
influence on fire-related C emission, in the Brazilian Amazon biome for the year 2015. The specific 
objectives were as follows: (i) evaluate the differences and similarities among the products regarding 
the total burned area detected, considering burned areas detected over forest and non-forest land 
covers; (ii) evaluate the differences and similarities in fire-related carbon emission estimates; and (iii) 
evaluate the spatial differences and similarities among the products. We hypothesize that the 
variation among the products increases in forest areas due to the difficult distinction of the burned 
areas in this land cover type [28–30]. 

The next sections are organized to provide a brief review of burned area detection techniques 
with remote sensing data, followed by the description of the study area and the burned area products 
considered in this study. We finally describe our intercomparison approaches and present their 
results in terms of burned area and commited C emissons. 

2. Burned Area Detection by Remote Sensing 

The detection and mapping of burned areas aims to produce spatially-explicit data on the extent 
of fire-affected areas, usually using data from optical sensors on the solar spectrum [31], which ranges 
from the visible light (0.4–0.7 µm) to the short wave infrared (SWIR) bands (1.4–2.2 µm). The radiation 
reflected by the Earth’s surface in these spectral regions (reflectance) is influenced by the target 
chemical and physical characteristics, as well as the sun–target–sensor geometry [31]. Data from the 
thermal infrared spectrum (0.7–2.2 µm) can also be used to map burned areas, but they are commonly 
integrated with other optical bands [32]. The near infrared (NIR, 0.7-1.0 µm) and SWIR (1.4–2.2 µm) 
spectral regions are especially sensitive to forest structure changes [33], and consequently are widely 
used to generate spectral indices or ratios for burned area detection [34–39]. However, due to a strong 
variability in the spectral characteristics of both pre- and post-fire conditions, and in the fire intensity 
and severity as well, the use of such indices may lead to the misclassification of burned areas, 
especially in forest environments [34]. As all of them are based on reflectance changes related to the 
immediate charcoal/ash deposition and lingering changes in the vegetation structure, they are also 
highly dependent on the temporal behavior of such conditions [35,40].  

A burned area mapping algorithm based on spectral indices derived from moderate resolution 
imaging spectroradiometer (MODIS) imagery and daily active fire data is described by Giglio et al. 
(2018) [17]. Their final product, MODIS Direct Broadcast Monthly Burned Area Product Collection 6 
(MCD64A1), presented a global omission error of 0.73 [41], showing the conservative aspect of their 
methodology, and the underestimation that unsupervised algorithms can generate. When 
considering tropical forest ecosystems, the omission and commission errors are still higher (0.9060 
and 0.6350, respectively) [41]. Bastarrika et al. (2014) [42] developed a supervised burned area 
mapping software (BAMS), which analyzes the temporal behavior of a multispectral index derivered 
from Landsat images. Their algorithm has only been tested in temperate forests, and its application 
for burned area mapping in tropical regions is more complex. Some of the challenges regarding 
burned area mapping in tropical forests are the high and persistent cloud cover and canopy closure, 
which can preclude the detectability of understory fires. 

Another way to highlight features of interest, such as burned areas, is through a linear spectral 
mixing model (LSMM) [43]. LSMM is based on a linear relation that represents the spectral mixture 
of different targets within a pixel. The data dimensionality (number of reflectance bands) is reduced 
by generating fraction images to represent the proportion of each target of interest within the 
resolution cell. Usually, the LSMM is processed to represent three targets (e.g., vegetation, soil, and 
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shade). The use of shade fraction images has been shown to be more efficient than spectral indices in 
mapping burned area in the Amazon [43]. Many studies have used LSMM to detect burned areas in 
the Brazilian Amazon [43–47]. They use moderate and/or coarse-resolution images (e.g., MODIS 
and/or Landsat, respectively) to perform LSMM, followed by shade fraction image segmentation and 
unsupervised classification. This approach proved to be an efficient method to map burned areas. 
However, all these studies require a final manual image interpretation procedure for minimizing 
misclassifications.  

A fundamental parameter that influences the detection of burned areas by satellites is the sensor 
resolution, both spatial and temporal. Most of the fire occurrence products are developed with 
satellite data with coarse spatial resolution (> 250 m). Coarse spatial resolution images make the 
development of automatic mapping very challenging due to the variability in the spectral 
characteristics of the burned area. On the other hand, a medium spatial resolution (~30 m) gives more 
reliability to the evaluation of the burned area [19]. However, these sensors often have worse 
temporal resolutions, and their longer revisit time decreases the chances of obtaining cloud-free 
images. This can be critical for burned area mapping over tropical regions, where the recovery of the 
spectral signal of vegetation can be quick and cloud cover is persistent [36]. The spatial resolution can 
also induce the underestimation of small fires, leading to a considerable underestimation of the global 
burned area [17,48]. For example, this limitation can underestimate fires in croplands by as much as 
10 times [17]. 

3. Study Area 

The study area corresponds to the Brazilian Amazon biome below the equator line. The area 
comprises about 74% of the Legal Amazon, and 73% of its 3,583,565 km2 were covered by forest in 
2016 (Figure 1). The study area includes the states of Acre (AC), Rondônia (RO), and portions of the 
states of Amazonas (AM), Pará (PA), Amapá (AP), Maranhão (MA), Mato Grosso (MT), Tocantins 
(TO) and Roraima (RR) (Figure 1). For the regional analysis, we considered only the percentage of 
area that falls within the study region of states with more than 40% of their area considered, and 
under similar rainfall regimes (dry season from July to October) (Figure 1, Table S2). Since the TREES 
product does not consider the north hemisphere region in its mapping due to the difficulty in 
obtaining cloud-free images, we excluded this region from our analyses to consider the common 
mapping area among all four products. 

 
Figure 1. Study area located in the Legal Amazon. Forest proportion in a 10 × 10 km grid cell, extracted 
by the Amazon Forest Deforestation Calculation Program (PRODES) forest mask of 2016 used to select 
burned areas over the forest. It presented the total area of each Brazilian state that intersects the study 
area, and their respective percentage area and forest area within the considered boundaries. 
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4. Materials and Methods 

4.1. Burned Area Products 

Currently, there are more than 13 open access burned area products available worldwide (Table 
S1), which are widely used. We considered three global burned area products, and one regional 
product for the intercomparison evaluation (TREES, MCD64A1, GABAM and Fire_cci) (Table 1). The 
products were chosen taking into account the spatial scale, since we would like to compare the global 
products with a regional one, and the spatial resolution, as we would like to analyze the effect of 
higher-resolution inputs in burned area detection. Therefore, we chose two global products that are 
widely used in the literature (MCD64A1 and Fire_cci), a recently published global product that has a 
spatial resolution of 30 m, this being the product with the best spatial resolution (GABAM), and a 
regional product developed particularly for the Amazon region (TREES). 

The Tropical Ecosystems and Environmental Sciences lab (TREES), based on the National 
Institute of Space Research (INPE), developed their burned area product in a regional basis that 
covers 86% of the Amazon biome, developed as part of multiple projects [7,43,46] (Project 
Amazonica—NERC/grant: NE/F005806/1; Project Estimativa de emissões de CO2 por desmatamento e 
degradação florestal utilizada como subsidio para definição de municípios prioritários para monitoramento e 
controle—CAPES/grant; Project Mapping and monitoring forest degradation using remote sensing data with 
medium and moderate spatial resolution—FAPESP/grant: 16/19806-3). Their product, called here TREES, 
is available upon request for 2006 to 2016 in an annual composite dataset. The product was developed 
using a hybrid classification method to delineate burned areas. The images of bands 1, 2 and 6 (red, 
near infrared and medium infrared) of the product MOD09A1Q1 were used as input to the LSM 
model. Then, a water mask is applied to avoid the detection of water pixels and unsupervised 
classification of the shade fraction image is carried out. In this fraction image the burned areas are 
highlighted, facilitating the distinction of these targets on the terrestrial surface [46]. Subsequently, 
an expert inspection is carried out to improve the accuracy of the final map, especially in forested 
areas, where burned areas can be easily confused or undetected [7,43]. The map accuracy resulting 
from the methodology adopted by TREES was quantified using a point-based method, considering a 
study case in Mato Grosso state for 2010 [28]. This product presents an overall accuracy for forested 
(0.9920) burned areas slightly higher than for non-forested (0.9630) burned areas (Table 2). 

MCD64A1 is a global dataset on burned areas developed by the National Aeronautics and Space 
Administration (NASA). The product is freely available for 2000 to present. Incorporating MODIS 
surface reflectance data coupled with 1 km MODIS active fire observations, its algorithm uses a burn 
sensitive vegetation index (VI) to create dynamic thresholds that are applied to produce the monthly 
composite data [17]. The current collection (c6) algorithm has already undergone improvements from 
older ones, and there is a continuous effort to minimize its limitations (more details on Table S1). The 
product is widely used; it has been applied as input for the development of other burned area 
products [49,50], as well as for the development of the Global Fire Atlas, which includes information 
on ignition locality, fire line, speed and direction of spread, essential to understanding the dynamics 
of individual fires and, therefore, better characterizing the changing role of fire in the Earth system 
[51]. It has also been used as input for biomass burning emissions models [48,52], to study the relation 
between fire and land cover change [53], and to track the response of fire occurrence to climate change 
[54]. 
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Table 1. Specifications of the burned area products to be compared. 

Name Developer Scale Time Span Sensors/Inputs Spatial 
Resolution 

Reference 

TREES TREES—INPE Regional (Brazilian 
Amazon) 

2006–2016 MODIS 250 m [7,43,46] 

MCD64A1 
c6 

NASA Global 2000–present 
MODIS (surface reflectance and 

active fires) 
500 m [17] 

GABAM 

Institute of Remote 
Sensing and Digital 

Earth—Chinese 
Academy of Sciences 

Global 2000, 2005, 2010, 
2015 and 2018 

Landsat 8 OLI 30 m [36] 

Fire_cci v.5.0 ESA Global 2001–2016 
MOD09GQ (surface reflectance) 

MOD09GA (quality flags) 
MCD14ML (active fires) 

250 m [55] 

Table 2. Accuracy information of four burned area products. 

Burned Area 
Product 

Overall 
Accuracy 

Omission 
Error 

Commission 
Error Validation Method Summary Reference 

TREES      

Forest areas 0.9920 0 0.1600 Point-based validation. Stratified random sample of 300 points’ 
distributed over burned and unburned forest on Landsat images 
for Mato Grosso state, 2010. The points are verified by 
experienced interpreters. 

[28] 
Non-forest areas 0.9630 0.4852 0.1067 

MCD64A1 c6      

Global 0.9970 0.7260 0.4020 Globally distributed reference dataset from March 1st, 2014 to 
March 19th, 2015, consisting of high-resolution reference maps 
derived from 1116 Landsat images visually interpreted. These 
independent reference data were selected using a stratified 
random sampling approach that allows for the probability 
sampling of Landsat data in both time and space. 

[41] 
Tropical forests 0.9940 0.9060 0.6350 

GABAM 0.9392 0.3013 0.1317 

It considered 80 validation sites globally, from where it acquired 
data from Landsat 8, CBERS-4 MUX and Gaofen-1 WFV. The 
reference burned areas were mapped with a semi-automatic 
classification method and refined with the manual edition. 

[36] 

Fire_cci v5.0 0.9972 0.7090 0.5123 
Stratified random sample of 1200 pairs of Landsat images, 
covering the whole globe from 2003 to 2014. [55] 

The Global Annual Burned Area Mapping (GABAM) is a recently released burned area product 
developed by Long et al. (2019) [36]. It is built from an automated algorithm implemented on Google 
Earth Engine (GEE), and it uses reflectance data from the Landsat 8 Operational Land Imager (OLI) 
and spectral indexes information as input for a Random Forest model. A final step consists of burned 
area shaping through a region growth approach [36]. GABAM is currently the global dataset with 
the highest spatial resolution (30 m), but it is only available for 2000, 2005, 2010, 2015 and 2018, and 
in a yearly composite, which does not allow seasonal analysis within a year. Its validation process 
showed lower omission (0.3013) and commission (0.1317) errors compared to Fire_cci and MCD64A1 
(Table 2). The implementation of the algorithm in GEE constitutes a great advance in mapping 
approaches, since the tool is open source, provides an extensive catalog of medium-resolution images 
and allows for cloud processing, which considerably increases the data incorporation in the process. 

The product Fire Disturbance (Fire_cci) is part of the Climate Change Initiative (CCI) program 
developed by the European Space Agency’s (ESA). To map the burned areas, a MODIS dataset is 
used, including reflectance images (MOD09GQ), quality masks (MOD09GA) and active fires 
(MOD14ML) [55] (Table 1). The images are aggregated into monthly composites and the classification 
algorithm is based on region growth, after the selection of seed pixels. Spatial and temporal 
parameters are, then, used in order to reduce commission and omission errors [55]. The final product 
is made available on a global scale. The version 5.0 was used in this work, since it was the most 
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updated version when this work was developed. Among the products developed using coarse spatial 
resolution data, Fire_cci was the first to provide a global dataset with a 250 m resolution. Its validation 
process indicated an overall accuracy of 0.9972, with 0.7090 global omission error and 0.5123 
commission error (Table 2). Recently, a new version of Fire_cci (version 5.1) was released [56]. The 
new version brings improvements of the burned area detection algorithm, which has allowed for 
detecting more burned area globally compared to the version 5.0, and expands the time span for 2001 
to 2019 [56]. Even with the improvements, the product has omission and commission errors similar 
to those of the previous version. Evaluating the southern hemisphere of South America, the product 
detects less burned area than the product MCD64A1 for the period 2005–2011, and its improvement 
in performance seems to be much smaller compared to the results obtained for the African continent 
[56].  

In the following sections these products will be called TREES, MCD64A1, GABAM and Fire_cci. 
We considered only burned area polygons detected between June and November of 2015, to 
guarantee temporal compatibility among the products analyzed. For GABAM, burned areas 
throughout the year were considered, as this is the only temporal resolution available. In order to 
extract the burned area over the forest, we applied the old-growth forest mask of 2016, produced by 
the Amazon Forest Deforestation Calculation Program (PRODES) [57] (Figure 1), since it covers the 
period of August 2015 to July 2016, and is thus a conservative mask for forest cover. The non-forest 
class corresponds to other land covers. It is important to highlight that, despite the TREES product 
presenting the best results in terms of errors of omission and commission, and because it is a product 
that was designed specifically for the study region involving a visual interpretation correction phase, 
we did not consider it as reference data. Our objective here was to compare the products with each 
other and to analyze the relative performance of each one in mapping burned areas in the Amazon, 
and not to validate them based on a reference. We emphasize that each product has its own 
development methodology, which incorporates advantages and limitations, and even assuming that, 
as a whole, the product provides a reasonable approximation of the conditions on the ground, none 
of which is the truth to be used as a reference.  

4.2. Committed Gross Carbon Emission Estimation 

To estimate the committed gross carbon emission, we used the above ground biomass (AGB) 
map developed by environmental monitoring via satellite in the Amazon biomeAmazon Fund-
Subproject 7—Estimating Biomass in the Amazon (EBA). The EBA map covers the Amazon biome, 
and it provides AGB density information for 2016 at a 250 m spatial resolution and an associated 
uncertainty map (See supplementary material (S§1) for more information.). Even though our analysis 
was done for 2015, we used the map for 2016 because just a minimum fraction (2%) of the burned 
area of 2015 overlapped the deforested area of PRODES 2016 (Table S3). The emissions associated 
with these areas were considered negligible compared to the total amount estimated for each burned 
area product.  

The committed carbon gross emission was estimated based on the relationship between the 
biomass before and after the fire, measured within a maximum of one year gap (Equation (1)). This 
method is an improvement of Anderson et al.’s (2015) [7] since it incorporates new data from Silva et 
al. (2018) [16] (See supplementary material (S§2) for more information.). This model shows the 
existence of a strong correlation between the incidence of fire and the initial biomass existing before 
burning. The hypothesis assumes that with the increase in biomass, microclimate conditions are more 
conducive to maintaining humidity within the canopy, reducing the intensity and susceptibility to 
fire spreading [58].  

𝐵𝐵𝑓𝑓 = 0.05 · 𝐵𝐵𝑖𝑖1.47 (1) 

Bf is the above ground living biomass (Mg ha−1) after the fire, and Bi is the initial above ground 
living biomass, given by the AGB map. The difference betweem Bi and Bf gives us the committed 
biomass density. After we applied this model to obtain the committed biomass density per cell, we 
transformed this density map into absolute biomass value by calculating the correct biomass 
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proportion given the cell area. Then, following the Intergovernmental Panel on Climate Change’s 
(IPCC) approach [59], we obtained the committed carbon map by multiplying the biomass per 0.5, 
that is, the amount of committed carbon per pixel. The committed carbon emission is then the sum 
of all cells that fall within the burning polygons, considering the different products. The same 
approach was used for the biomass uncertainty map, since it provides a biomass density value to be 
used as an uncertainty interval of the value presented in the AGB map, thus resulting in a committed 
carbon uncertainty map. In the same way, the uncertainty of the committed carbon emission is then 
the sum of all cells that fall within the burning polygons, considering the different products. 

4.3. Total and Regional Analysis 

We adopted two approaches for the analyses: the vector approach, which was applied to 
evaluate the agreement between the total burned area detected by each product, and to estimate its 
impact on carbon emission; and the matrix approach, which was applied to investigate the spatial 
variations in these results. 

On the vector approach, the total burned area was computed for each of the four products, 
considering the forest and non-forest classes. This processing was carried out using the ‘rgeos’ 
package [60] in R statistical software [61]. Subsequently, the C emission maps (EBA and EBA 
uncertainty) were used separately to extract the sum of committed gross C emission within each 
burned area polygon, considering the different classes of land cover. This process was carried out on 
R, using the ‘raster’ package [62]. Of the total 113,190 km2 burned area detected, considering all four 
products, 0.3% was not considered, due to polygon size incompatibility with the resolution of the 
carbon data. The most affected product was GABAM, whose deleted polygons summed 133.3 km2. 
This area, however, represents only 0.5% of the total burned area of this product, and therefore can 
be considered insignificant. The estimates were also made separately for each Brazilian state included 
in the study area, in order to generate information for decision making since the states have autonomy 
in seeking investments under Reducing Emissions from Deforestation and Forest Degradation 
(REDD+) initiatives. 

To assess whether the error embedded in the burned area data, translated into the committed 
gross C emission estimate, is greater than the estimated emission uncertainty, we compared the 
absolute value of the difference in C emission estimate between every burned area product pair with 
the maximum uncertainty value between them. Therefore, this strategy can be considered 
conservative, since the maximum uncertainty value was used for the comparison. The following 
conditions were tested (Equation (2)): 

𝐼𝐼𝐼𝐼 

⎩
⎪
⎨

⎪
⎧ �𝐶𝐶𝑝𝑝1 −  𝐶𝐶𝑝𝑝2� − max  �𝑈𝑈𝐶𝐶𝑝𝑝1,𝑈𝑈𝐶𝐶𝑝𝑝2� > 0; 𝑡𝑡ℎ𝑒𝑒 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒𝑏𝑏 𝑎𝑎𝑏𝑏𝑒𝑒𝑎𝑎 𝑝𝑝𝑏𝑏𝑝𝑝𝑏𝑏𝑏𝑏𝑝𝑝𝑡𝑡 𝑝𝑝ℎ𝑝𝑝𝑜𝑜𝑝𝑝𝑒𝑒          
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�𝐶𝐶𝑝𝑝1 −  𝐶𝐶𝑝𝑝2� − max  �𝑈𝑈𝐶𝐶𝑝𝑝1,𝑈𝑈𝐶𝐶𝑝𝑝2� < 0; 𝑡𝑡ℎ𝑒𝑒 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒𝑏𝑏 𝑎𝑎𝑏𝑏𝑒𝑒𝑎𝑎 𝑝𝑝𝑏𝑏𝑝𝑝𝑏𝑏𝑏𝑏𝑝𝑝𝑡𝑡 𝑝𝑝ℎ𝑝𝑝𝑜𝑜𝑝𝑝𝑒𝑒 𝑏𝑏𝑝𝑝𝑒𝑒𝑠𝑠 𝑏𝑏𝑝𝑝𝑡𝑡 

𝑠𝑠𝑜𝑜𝑠𝑠𝑏𝑏𝑜𝑜𝑠𝑠𝑜𝑜𝑝𝑝𝑎𝑎𝑏𝑏𝑡𝑡𝑠𝑠𝑠𝑠 𝑎𝑎𝑠𝑠𝑡𝑡𝑒𝑒𝑏𝑏 𝑡𝑡ℎ𝑒𝑒 𝑝𝑝𝑎𝑎𝑏𝑏𝑏𝑏𝑝𝑝𝑏𝑏 𝑒𝑒𝑒𝑒𝑜𝑜𝑠𝑠𝑠𝑠𝑜𝑜𝑝𝑝𝑏𝑏 𝑒𝑒𝑠𝑠𝑡𝑡𝑜𝑜𝑒𝑒𝑎𝑎𝑡𝑡𝑜𝑜𝑝𝑝𝑏𝑏

 (2) 

Cp1 is the committed gross C emission estimation using burned area product 1n and Cp2 is the 
same, using a second burned area product. UCp1 is the committed gross C emission uncertainty 
associated to the estimation using burned area product 1 and UCp2, which is the same using a second 
burned area product. Therefore, if the absolute value of the difference between the committed gross 
C emission estimation among the two products is smaller than the committed gross C emission 
estimation uncertainty, we can conclude that the difference among the products is within what is 
expected for the uncertainty of the AGB data, and therefore, the choice of one product or another 
does not cause significant over- or underestimation of committed gross C emission in the considered 
area.  

For the matrix approach, the burned area products, considering the different land covers, were 
incorporated into a regular grid with an approximately 10 by 10 km spatial resolution. The 
incorporation took into account the proportion of the polygon falling inside each grid cell. This 
process was run on R using the ‘raster’ package [62]. The statistical comparison between the six 
possible combinations of product pairs was carried out using the non-parametric Kolmogorov–
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Smirnov two-sample test [63]. We used a bootstrap approach, implemented in R statistical software 
v.4.0.2 [61], with 10,000 iterations. For each iteration, the algorithm randomly raffled a sample of 10% 
of the total cells in each case with replacement. Finally, based on the bootstrap results, we calculated 
the mean and standard deviation of the 10,000 p-values. The comparison considered only cells that 
presented burning detection by at least one product.  

Subsequently, for the spatial comparison, the regular grid was converted into raster files 
carrying the information of burned area for each combination of burned area product and land cover. 
Like the statistical comparison, we considered only cells that presented burning detection by at least 
one product. The burned area maps were then compared two by two, within each land cover class, 
using the fuzzy numerical method implemented in the Map Comparison Kit 3 (MCK) application 
[64]. The fuzzy numerical method takes into account grades of similarity between pairs of cells in two 
numerical maps. Although it is a cell-by-cell comparison method, it considers the neighborhood to 
express the similarity of each cell in a value between 0 (fully distinct) and 1 (fully identical) [65]. The 
fuzzy technique allows one to distinguish real differences from minor mapping artifacts, besides 
giving a spatial assessment, clarifying not only the location of disagreement but also the severity [66]. 

Considering that the burned area registered in a cell is partly defined by the cells found in its 
proximity, the fuzziness of location influence level is accounted for via a function. In this study, we 
adopted an exponential decay function with Halving distance equal to 2 and considered the 
neighborhood radius as equal to 4. This is the default setting for the algorithm implemented in MCK. 
In the fuzzy numerical model, the similarity of two values (a and b) is calculated following Equation 
(3). The resulting statistic for overall similarity is then the average similarity over the whole area 
considered.  

𝑆𝑆(𝑎𝑎, 𝑏𝑏) = 1 −  
|𝑎𝑎 − 𝑏𝑏|

max(|𝑎𝑎|, |𝑏𝑏|)
 (3) 

5. Results 

5.1. Vector Approach: Intercomparison of Total Burned Area  

The four burned area products differ according to the total area mapped and, consequently, total 
C that is emission related (Figure 2). The most similar products, both in total mapped area and C 
emission, are TREES and MCD64A1. MCD64A1 presents only 2.9% less total burned area compared 
to TREES, 0.9% in non-forest and 10% in forest areas (Figure 3). The most significant difference occurs 
between TREES and Fire_cci, with the second mapping 58% less burned areas; 52% and 78% for non-
forest and forest, respectively. 

 

Figure 2. (a) Total burned area mapped by TREES, MCD64A1, GABAM, and Fire_cci over forested 
areas and non-forested areas, considering the whole study area. (b) Committed gross carbon emission 
related to fires according to the four burned area products. 
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Regionally, TREES, MCD64A1 and GABAM present the same pattern of burned area both over 
non-forest and forest, whereby eastern Amazonian forests (Pará state) were the most affected area 
(Figure 3, Figure S2). Despite this, GABAM presents 41% more forest area mapped in this region than 
TREES and 22% more than MCD64A1. GABAM also presents more burned area over forest in central 
Amazonia (Amazonas state), mapping 120% more burned area than TREES and 85% more than 
MCD64A1. In the far east Amazonia (Maranhão state), on the other hand, GABAM has a poorer 
performance, mapping up to 53% less burned area than the TREES product.  

In southwestern Amazonia, in Acre state, we also observed great divergence between the 
products. TREES presents more burned areas in non-forest than the other products, and the difference 
can be up to 40 times when compared with Fire_cci. Interestingly, GABAM presents the highest forest 
burned area mapped, close to the TREES product, and 160 times larger than the Fire_cci product. 
Fire_cci, in general, registered less burned area in all cases and sites. 

 

Figure 3. Burned area and committed gross carbon emission registered by TREES, MCD64A1, 
GABAM and Fire_cci products. 

5.2. Vector Approach: Impact on Committed Gross Carbon Emissions Estimates 

Such differences in burned area among the products are reflected in the variance observed in 
the committed gross C emission estimates (Figure 3). The use of the Fire_cci product resulted in 29.54 
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+ 3.36 Tg C less estimated carbon emitted, a difference of 66% compared to the regional map 
developed by TREES. In contrast, the use of MCD64A1 results in only 5% (2.32 ± 0.17 Tg C) less than 
the carbon emission estimated by TREES. If only the forest areas are analyzed, TREES is also the 
product that generates the highest carbon emission, at 16.96 ± 1.73 Tg C for 2015. The product that 
comes closest to this estimate is GABAM, with a difference of 11% (Figure 3). The same pattern can 
be observed with the Baccini dataset, considering the total emission on the study area (Table S5). 
Nonetheless, the Baccini dataset seems to overestimate the committed gross C emission compared to 
the EBA dataset, which makes the EBA estimates conservative (See supplementary material (S§3) for 
more information). Even though GABAM presented a greater area of burned forest than TREES, it 
had lower carbon emission estimate. This is due to the distinct spatial dispersion of the burned areas 
detected by each product. Since the emission is estimated as a function of initial biomass, it will 
depend on the spatial location of each burned area (Figure S3).  

For the southern and western Amazonian states (Acre, Mato Grosso and Rondônia), the TREES 
product presented emission estimates superior to all other products for both forest and non-forest. 
For example, in Acre state, the emissions estimated using TREES were 57 (0.90 ± 0.11 Tg C) and 171 
(0.90 ± 0.09 Tg C) times larger than those derived by using Fire_cci for non-forest and forest, 
respectively. On the other hand, in eastern Amazonia, Pará state, although the emission estimates 
using TREES and MCD64A1 were similar (16.72 ± 2.02 and 18.27 ± 2.23 Tg C, respectively), the 
differences between them still resulted in up to 9% more carbon emission than was estimated using 
the MCD64A1 product, mainly due to the larger forest area mapped by this product.  

So far, we have already observed that there are differences between the burned area products 
that can generate under- or over estimates of carbon emissions. Using the reasoning presented in 
Equation (2), we show that for non-forest land cover, TREES and MCD64A1 are the only products 
that can be used with no significant difference (Figure 4). For forest areas, the choice between these 
two products may bring over- or underestimates. In this case, the comparison of GABAM with these 
two products showed results within the range of uncertainty. Analyzing each state separately, we 
observed the spatial difference of this pattern. For non-forest areas in Acre, for example, no product 
can be used in a similar way to another. Likewise, in the forest areas in Maranhão, all products 
showed differences in their estimates of carbon emissions that were greater than their uncertainty 
(Figure 4). In general, the choice of the Fire_cci product always results in carbon emission 
underestimations when compared with the others (Figure 3). 
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Figure 4. Carbon emissions difference analysis. The lower diagonal contains the absolute value of the 
difference of carbon emissions (Tg) between the products. The upper diagonal indicates if the 
difference is greater (green upside triangle) or lower (red downside triangle) than the maximum 
uncertainty value between them. 

5.3. Matrix Approach: Statistical and Spatial Intercomparison 

Corroborating the differences in magnitude found in the vector analysis, the TREES and 
MCD64A1 products were the only ones that did not present significant differences at a 95% 
confidence level (p > 0.05). The same pattern can be observed when forest and non-forest are analyzed 
separately (Table S6). Considering this comparison, the bootstrap approach resulted in 81% of the 
10,000 iterations (84% for forest and 82% for non-forest) of non-significant p-values (p > 0.05). All the 
other combinations resulted in 100% significant p-values at a 95% confidence level.  

The four products also present spatial divergence. Despite the small difference in total mapped 
area, TREES and MCD64A1 also presented spatial divergence, mainly on the extreme north of the 
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study area and in Acre state (Figure 5). The GABAM product presents a lot of small patches of burned 
areas, which reflects the higher number of cells with low burn proportion (Figure 6). Although this 
product does not present the highest burned area, it includes the most spatially broad mapping 
among those considered. Analyzing the correlation, given by scatter plots of the percentage of burned 
area per cell, among the different pairs of products, we observed that all relations are statistically 
significant at a 95% confidence level (p < 0.05). The relation between TREES and MCD64A1 is the 
closest to 1. The determination coefficients are, however, intermediate for all comparisons, ranging 
from 0.47 (TREES vs. Fire_cci) to 0.66 (MCD64A1 vs. GABAM) (Figure S4).  

 

Figure 5. Burned area spatialization in a 10 km × 10 km regular grid. Each grid cell contains the burned 
proportion indicated by the color gradient. 

 

Figure 6. Number of cells in different burned proportion classes. 

The similarity analysis allows the identification of the pairs of products that are the most 
spatially coherent. In general, the similarity indexes are medium to low between all products (Table 
3). Considering the study area, the similarity indexes are always between 0.4 and 0.5, regardless of 
the land cover. When we distinguish forest and non-forest areas, we can see two patterns: relative 
higher indexes when Fire_cci is considered for comparisons in non-forest areas, and relative lower 
indexes when GABAM is considered for comparisons in forest areas. The first pattern can be 
explained by the reduced extent mapped by the Fire_cci product; the more conservative the mapping, 
the greater the chance of being more similar to other products, and this is the case for Fire_cci. The 
second pattern, on the other hand, can be explained by the opposite reasoning. GABAM has the 
largest extent mapped in forest areas, and therefore a greater chance of mapping areas the other 
products did not. 
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Table 3. Overall similarity for each burned area product comparison pair, considering the whole area, 
and separating it into non-forest and forest areas. The result is provided for the entire study area, as 
well as for each Brazilian state considered separately. The similarity index ranges from 0 (fully 
distinct) to 1 (fully identical), and was calculated using the fuzzy numerical algorithm for map 
comparison. 

  Study Area AC 1 AM 2 MA 3 MT 4 PA 5 RO 6 

Total               

TREES × MCD64A1 0.408 0.194 0.316 0.458 0.459 0.406 0.451 

TREES × Fire_cci 0.483 0.114 0.610 0.437 0.529 0.491 0.395 

TREES × GABAM 0.467 0.470 0.495 0.395 0.529 0.416 0.544 

MCD64A1 × Fire_cci 0.507 0.784 0.389 0.369 0.544 0.493 0.583 

MCD64A1 × 

GABAM  
0.450 0.164 0.376 0.489 0.468 0.474 0.465 

Fire_cci × GABAM 0.414 0.073 0.463 0.254 0.555 0.387 0.408 

Non-forest               

TREES × MCD64A1 0.428 0.242 0.390 0.474 0.464 0.421 0.456 

TREES × Fire_cci 0.505 0.153 0.653 0.459 0.543 0.510 0.413 

TREES × GABAM 0.449 0.276 0.420 0.436 0.484 0.424 0.513 

MCD64A1 × Fire_cci 0.533 0.798 0.454 0.396 0.553 0.520 0.607 

MCD64A1 × 

GABAM  
0.472 0.651 0.406 0.489 0.445 0.484 0.480 

Fire_cci × GABAM 0.480 0.670 0.513 0.312 0.563 0.445 0.443 

Forest               

TREES × MCD64A1 0.515 0.291 0.433 0.674 0.551 0.507 0.507 

TREES × Fire_cci 0.542 0.151 0.580 0.699 0.572 0.543 0.425 

TREES × GABAM 0.513 0.519 0.504 0.608 0.583 0.451 0.514 

MCD64A1 × Fire_cci 0.573 0.790 0.464 0.614 0.600 0.548 0.578 

MCD64A1 × 

GABAM  
0.493 0.202 0.382 0.673 0.527 0.498 0.463 

Fire_cci × GABAM 0.446 0.090 0.408 0.546 0.553 0.418 0.386 

¹ AC = Acre; ² AM = Amazonas; ³ MA = Maranhão; 4 MT = Mato Grosso; 5 PA = Pará; 6 RO = Rondônia. 

 

Regionally, both the extreme west and extreme east (Acre and Maranhão, respectively) are the 
regions where most differences in mapping occur, denoted by the broad range of similarity among 
the products. In Acre, the relative high similarity index found for MCD64A1 and Fire_cci (0.784) 
shows that both products presented less burned area detected in this state. These products did not 
present as much burned area as was captured by the TREES product (less 88% and 98%, respectively), 
in both land covers. When analyzing GABAM compared to MCD64A1 and Fire_cci, we observed that 
the lower similarity indexes are mainly due to forest affected areas for the study area, and for the 
Acre and Amazonas states. GABAM is the product with the highest detection of forest fires in Acre 
and Amazonas; its mapping areas were approximately 161 and 10 times greater than those of Fire_cci 
in the forest areas of these states, respectively. However, GABAM presents relatively poor 
performance for the eastern forests in Maranhão state. Although the overall similarity for Maranhão 
state is already relatively low compared to the other states, we see that the indexes for the non-forest 
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areas are clearly lower than the ones for forest, indicating a greater divergence between the products 
for non-forest areas in this state (Table 3). 

Despite the fact that most values of similarity indexes are intermediate, as they are averages for 
each region, similarity scale extremities can be observed spatially in Figure 7 (and Figures S5 and S6, 
for burned area over forest and non-forest, respectively). This visual spatial analysis allows the 
identification of regions that are the more cohesive, or not, among the burned area products. Between 
TREES and MCD64A1, most of the low similarity registries occur in the north region, where 
MCD64A1 presents better performance, and in southwestern Amazonia, where TREES registers more 
burned area (Figure 8a). Between TREES and GABAM, little similarity occurs on the north, mainly in 
the northeast of the Pará and Amazonas states, where GABAM presented more fire-affected areas. 
Even in Acre, where these products present approximately equal estimates in forest affected area, 
there is divergence, mainly in the western part of the state (Figure 8b). The same occurs between 
MCD64A1 and GABAM, with the addition of minor similarities in Rondônia state. The low 
performance presented by Fire_cci in mapping as much burned area as the other products is 
highlighted in Figure 8, which shows that most cells contain information exclusively from TREES or 
MCD64A1, or a combination of them. 

 

Figure 7. Similarity maps for each burned area product comparison pair. The similarity index was 
calculated considering only cells that presented burned area detection by at least one product. The 
similarity index goes from 0 (lowest similarity) highlighted by dark red to 1 (highest similarity) 
highlighted by dark purple. 
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Figure 8. Confusion maps considering (a) TREES, MCD64A1 and Fire_cci burned area products, and 
(b) TREES, MCD64A1 and GABAM burned area products. The 10km cells are colored according to 
the occurrence of information from each product or a combination of them, disregarding the burned 
area proportion in each cell. 

6. Discussion 

Every sensor considered to generate a burned area product has characteristics and specifications 
that incorporate limitations in the final product, affecting their performances regionally. The daily 
temporal resolution of MODIS data ensures a higher frequency of data acquisition and minimizes 
cloud cover, important factors for monitoring tropical areas. In these regions, depending on the time 
elapsed after the fire, the signs of burned areas can be removed quickly due to climatic conditions 
and the speed of vegetation regeneration [67]. Currently, with daily global products available, 
MODIS data have been widely used in burned area detection with 500 m spatial resolution [68,69]. 
Landsat data have a 16-day temporal resolution, but with the advantage of a 30 m spatial resolution 
in the optical spectrum. The spatial resolution allows a better definition of the boundaries of the 
burned area, avoiding a greater mixture of pixels from burned and unburned patches [36]. In 
addition, its long time series allows one to trace historical trends in fire dynamics [70]. Therefore, it 
is essential for the final user to understand such characteristics in order to consider them in the choice 
of which product is most appropriate for their application. In addition to the limitations of each data 
set, the spatial evaluations of the burned areas revealed that the similarities between the products 
varied regionally. Depending on the scale of the study to be developed, the choice of which product 
to use can have a significant impact on the final result.  

Regarding the total burned area mapped, we can separate the products into two groups: two 
very similar products (MCD64A1 and TREES) and two other (GABAM and Fire_cci). Although the 
GABAM product presents 21% less total burned area compared to the TREES product, GABAM was 
the product that registered the most burned forest, reaching 11% more than the TREES product. This 
shows that the spatial resolution of GABAM (30 m) gives an advantage to the mapping of this land 
cover. In addition, GABAM presents the smallest commission error, considering the error related to 
forest areas for the TREES product. Although some studies indicate that the use of MODIS data at a 
250 m spatial resolution can underestimate burned area by approximately 25% in relation to 
manually digitized burn scars based on Landsat images at a 30 m resolution [30,71], in a global 
comparison between the GABAM and Fire_cci products using the proportion of burned area in 0.25° 
× 0.25° grids, GABAM generally underestimated burned scars, and the inconsistency was attributed 
to the difference in spatial resolution of data sources [36]. GABAM’s higher resolution can allow 
better delineation of fire pixels, resulting in less pixels classified as burned globally. However, our 
study shows that in a regional analysis, this statement can change, since the GABAM product 
registered almost twice as much (1.9 times) total burned area as the product Fire_cci, for the study 
area considered. Nevertheless, GABAM’s developers warn that using Landsat images as the data 
source decreases the number of valid observations, considering Landsat’s temporal resolution and 
cloud contamination, which may explain its performance compared to TREES and MCD64A1 
products. This limitation is especially critical over tropical regions, where vegetation recovery is 
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quick, and cloud cover is persistent [36]. In this sense, the use of coarse-resolution images to detect 
fire can be justified, since they generally offer higher temporal frequency [17,18]. 

Among the products developed using coarse spatial resolution data, Fire_cci was the first to 
provide a global dataset with a 250 m resolution. Its validation process for version 5.0 indicated an 
overall accuracy of 0.9972, with 0.7090 global omission error and 0.5123 commission error (Table 2) 
[55]. Similarly, version 5.1 presented 0.6710 global omission error and 0.5440 commission error [56]. 
The errors reflect the conservative nature of this dataset, which may explain the great difference 
compared to other products. Its developer argues that, although globally higher than MCD64A1 c6, 
its errors for version 5.0 are better compensated, with a tendency towards underestimation, than most 
existing global products [55]. Fire_cci’s developers highlight its better detection accuracy for small 
patches (<100 ha) compared to MCD64A1 in a sample over Africa [55], although both had high errors 
for these small fires. Version 5.1 brings improvements in this direction. Despite the significant 
contribution of this product to fire modeling based on burned area global analysis, we show that 
regionally, the use of this product can be critical in underestimating the overall burned area, and thus 
consequently the fire-related impacts on carbon emissions.  

In general, coarse-resolution products have been shown to be unable to adequately detect small 
fires (<100 ha) [72]. This limitation can lead to a considerable underestimation of global burned area 
[17,48], underestimating fires in croplands by as much as 10 times [17]. The newest collection (c6) in 
the MCD64A1 offers the significantly better detection of small burns (<100 ha) compared to older 
versions, but in general, it remains unable to map them adequately. It underestimated fire perimeter 
length in all vegetation classes, and care should be taken when using it for cropland regions [51]. 
Considering its higher spatial resolution, GABAM seems to detect small burned areas better. 
Although it was the product that presented the greatest range of mapping, it was not the one that 
detected the most extensive total area. Furthermore, when analyzing the regular grid of 10 km spatial 
resolution, most cells that had burned areas in GABAM recorded small burn proportions, suggesting 
small burnt patches. 

The product MCD64A1 was the one presenting the biggest difference in omission and 
commission errors related to TREES, reaching commission errors 75% higher than the TREES product 
for forest areas and 83% higher for non-forest areas. The high omission error presented by this 
product, especially for tropical forests, also indicates the conservatism adopted in its methodology. 
Surprisingly, MCD64A1 was the product that came closest to the regional product TREES in total 
burned area detected. Shimabukuro et al. (2015) [19] estimated a difference of 21% between the 
MCD64A1 and a product built with Landsat TM images using the same methodology as TREES for 
Mato Grosso state. Here, we found a difference of only 0.15% between MCD64A1 compared to TREES 
for Mato Grosso state, considering the total burned area. However, this difference can reach 15%, 
considering burned areas over the forest. When analyzing the whole study area, these products 
registered significant spatial divergences. The product MCD64A1 recorded more fires in the north 
and northwest of the study area, mainly in the state of Amazonas, compared to TREES. The TREES 
product concentrates on more exclusive mapped areas in the southwest, mainly in Acre state. The 
burned areas in the north of the study area, presented by the product MCD64A1 and also by the 
product GABAM, seem to follow the hydrography (Figure S7). One hypothesis would be that these 
burned areas would partially correspond to flooded regions. Many detected areas occur along the 
margins of the Amazonas river and water presents low reflectance in all wavelengths, similar to 
burned areas. As a brief analysis, we assessed the burned areas of the four products in relation to the 
hydrography to calculate the proportion of intersection (Table S7). Even the percentages of burned 
area over the hydrography mask are small for all four products (maximum of 1.5%), and MCD64A1 
and GABAM are the products with the largest overlap (1.5% and 0.9%, respectively). If we compare 
regionally, Amazonas is the state with the largest overlap presented by these two products (10.3% 
and 4%, respectively). 

The detection of burned forest worldwide is made difficult when fire does not reach the forest 
canopy, since the spectral signal does not change sufficiently to be detectable by remote sensors. It 
has been shown that in areas with high leaf area index (LAI) and percent tree cover, there is a 
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misdetection of burned areas [29,30]. Therefore, our initial hypothesis was that the variation between 
the products would increase in forest-affected areas. We expected that the regional product TREES, 
in which there is manual image interpretation, would present greater sensitivity for mapping burned 
forests [28]. This hypothesis was not sustained in most cases. Firstly, GABAM, which has a 30 m 
spatial resolution, was the product that most detected burned forests, leading us to consider that 
spatial resolution can be very important for burned forests detection. In an intercomparison analysis 
between FireCCISFD11 (20 m), a Sentinel-2 burned area product derived for 2016 in Sub-Saharan 
Africa, MCD64A1 c6 and Fire_cci v.5.0, the Sentinel product was found to be more accurate than any 
global product for detecting small fires, detecting 4.9 Mkm2, 80% more than MCD64A1 c6 (2.7 Mkm2) 
and 97% more than Fire_cci v.5.0 (2.5 Mkm2) [56]. Since all these three products used MODIS active 
fires to train their algorithms, the improved performance of FireCCISFD11 should be mostly 
attributed to the spatial resolution of the input reflectance [56]. However, the study did not 
distinguish land cover classes in its analyses. Additionally, in our analysis, even though the burned 
area difference was greater in burned forests between MCD64A1 and TREES, and between Fire_cci 
and GABAM, the difference in burned area was greater in non-forest areas in most cases. There is no 
rule to support this hypothesis, and it is possible to observe that there is variation both between 
products and spatially. 

For a study that aims to quantify fire-related C emission, the choice of the burned area product 
must consider the scale of the process to be observed. For the study area, the difference between 
products can reach 29.54 ± 3.36 Tg C yr−1 when comparing the global product Fire_cci and the regional 
TREES. Taking the average value, it corresponds to 21% of the total gross CO2 emissions from forest 
fires in 2015 in the Brazilian Amazon biome [5]. In Acre state, even the most similar products, TREES 
and GABAM, differed by 0.8 ± 0.33 Tg C, and this is equivalent to 23% of the average biomass loss 
during an extreme drought year in this state [73]. The same comparison with Fire_cci can result in a 
difference of more than 50% of the average biomass loss in a drought year in Acre state. The 
differences in estimates can be significant, but it is necessary to consider that biomass data bring 
uncertainty into these estimates, an intrinsic factor in the development of the data. Thus, when 
calculating the carbon emission related to fire, the choice between burned area products can reflect 
significant differences in the estimates, or irrelevant differences, considering the level of uncertainty 
of the biomass data. For non-forest areas, in most cases, MCD64A1 and TREES presented irrelevant 
differences in fire-related carbon emissions, which means that the difference in emission estimates 
using these products is smaller than the biomass data uncertainty. For forest areas, there is more 
variability among the states. All comparisons with Fire_cci resulted in significant differences. It is 
recommended to undertake not only a spatial analysis but also an analysis of the phenomenon itself, 
as a way to support the choice of the product, conditioning it to the particular research objective 
aimed at.  

The map scale can also influence the differences in the burned area products. It is more feasible 
to adapt the mapping method regionally over the wide range of pre- and post-burn conditions, 
considering specific dynamics for different ecosystems. Work on a regional scale also allows for a 
manual post edition of the automatic burn classification, minimizing the omission and commission 
errors [28,46,74]. The adoption of global burned area products in regional analyses, in general, can 
result in significant underestimation of the fire-affected area, and this underestimation varies 
spatially. The underestimation shown here, for 2015, between TREES and MCD64A1 for Acre state, 
which was 88% less burned area registered by MCD64A1 compared to TREES, was again found for 
2019 by Silva et al. (2020) [75], with the same percentage of less burned area registered by MCD64A1 
compared to their product, which also includes a manual edition in its mapping methodology. 
Although the final manual edition procedure has a high time and human resource cost, it can avoid 
as much as 20% of the underestimation of the burned area, compared to methods that do not consider 
this step [19]. Additionally, studies that consider a time series can assess whether the spatial variation 
is systematic, and in this case, this variation can be used as a guideline for improvements in mapping.  

Finally, we also highlight that the most probable result of comparing different data is obtaining 
different patterns, which was indeed the case. However, it may also be relevant to point out that, 
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notwithstanding the differences, some patterns are similar, which means that the four burned area 
products can cross-validate each other to some extent or, similarly, that the more the sources point to 
a given pattern, the more reliable the pattern is. Moreover, we consider the continuous process of 
improving global burned area products as fundamental to strengthening environmental conservation 
in the Amazon, as they are often used as inputs for technical reports and public policy formulation. 
In the absence of an official national product for the long-term monitoring of fire-degraded forests 
extent, global products provide the only reliable and operational option to expose the magnitude of 
the fire-related socioeconomic and environmental losses we are currently experiencing in the region 
[76]. 

7. Conclusions 

This work performed an intercomparison of four burned area products, one being a regional 
burned area map, developed by TREES–INPE, and the other three being global products. We 
analyzed the difference in the total area mapped over forest and non-forest areas, as well as their 
influence on fire-related C emission estimates in the Amazon for the year 2015.  

The four burned area products differ according to the total area mapped and, consequently, total 
related C emission. Only accounting for the magnitude of the difference, the most similar products 
are TREES and MCD64A1, both for non-forest and forest areas. The products that stand out the most 
are TREES and Fire_cci, and the difference between the two can reach 78% less burned area detected 
by Fire_cci in forest areas considering the Amazon, and 99% in Acre. The difference between products 
was not higher in forest areas in all comparisons, and regionally analyzing the initial hypothesis of 
more significant variation in these areas cannot be sustained in most cases.  

Despite the broader coverage of the GABAM product, it does not have the magnitude of total 
burned area recorded by TREES and MCD64A1, and this is linked to the use of Landsat 30 m data. 
The more extended temporal resolution of Landsat images makes it difficult to obtain data without 
cloud interference, and besides, the better spatial resolution can either decrease the mapped area due 
to a better scar delineation or increase the contribution of small polygons. The better spatial resolution 
of the Fire_cci product (250 m) compared to MCD64A1 (500 m) does not appear to have conferred an 
advantage for the mapping of fire-affected areas in the Amazon.  

Besides, when these products are used to estimate fire-related carbon emission, the choice 
between them can lead to significant changes in estimates. The use of Fire_cci may result in 29.54 ± 
3.36 Tg C less estimated carbon emitted, a difference of 66% less compared to the regional product 
TREES. Considering non-forest areas in the Amazon, and for the analysis of carbon emission 
estimates specifically, the difference between the adoption of TREES and MCD64A1 is within the 
expected error for the biomass dataset. For forest areas, the comparisons that are within the expected 
error are GABAM and TREES, and GABAM and MCD64A1. This analysis varied across the Brazilian 
Amazon states, and there was no single rule for all of them. 

Overall, for the Amazon, the global product MCD64A1 was the closest to the regional product 
TREES, but regionally there are still significant differences between them, especially in forest areas. 
It was shown here that global products used interchangeably on a regional scale could significantly 
underestimate the impacts of fire and, consequently, fire-related carbon emissions. As such, the end-
user must choose the product based on the phenomenon and scale to be studied, considering the 
parameters of the data used in the mapping and the limitations conferred by such in the final result. 
The choice process can involve merging more than one product to optimize its advantages and 
produce more consistent data for the user’s needs, getting closer to the true total burned area and its 
regional distribution. Additionally, the information contained herein still serves as evidence for the 
improvement of burned area detection algorithms in the Amazon, subsidizing the development of 
new and more accurate products for the region. 

Supplementary Materials: Supplementary Materials: The following are available online at 
www.mdpi.com/2072-4292/12/23/3864/s1, Table S1: Overview of fire occurrence available products, Table S2: 
List of Brazilian states that are included in the study area, Table S3: Total burned area and its intersection area 
with PRODES 2016, Table S4: Summary of the data used for developing Equation (1), Figure S1: Relationship 
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between initial biomass and remaining biomass after fire events, Figure S2: Total burned area mapped by TREES, 
MCD64A1, GABAM and Fire_cci, Table S5: Difference between the committed gross carbon emission estimates 
calculated by EBA and Baccini AGB maps, Figure S3: Above ground biomass map from EBA and polygons of 
burned forest both from TREES and GABAM products, Figure S4: Scatter plots of the percentage of burned area 
per cell among the different pairs of products, Table S6. Mean and stardard deviation of p-values resulted from 
10,000 iterations of Kolmogorov-Smirnov two-sample test, Figure S5: Similarity maps for each burned area 
product comparison pair, considering burned area over forest, Figure S6: Similarity maps for each burned area 
product comparison pair, considering burned area over non-forest, Table S7: Total burned area and its 
intersection area with the hydrography, Figure S7: Study area and the hydrography of the region, Figure S8: 
Graphical abstract (References [76–94] are cited in the supplementary materials). 
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